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Abstract In recent decades, society has been greatly affected by natural disasters (e.g.

floods, droughts, earthquakes), and losses and effects caused by these disasters have been

increasing. Conventionally, risk assessment focuses on individual hazards, but the

importance of addressing multiple hazards is now recognised. Two approaches exist to

assess risk from multiple hazards: the risk index (addressing hazards, and the exposure and

vulnerability of people or property at risk) and the mathematical statistics method (which

integrates observations of past losses attributed to each hazard type). These approaches

have not previously been compared. Our application of both to China clearly illustrates

their inconsistency. For example, from 31 Chinese provinces assessed for multi-hazard

risk, Gansu and Sichuan provinces are at low risk of life loss with the risk index approach,

but high risk using the mathematical statistics approach. Similarly, Tibet is identified as

being at almost the highest risk of economic loss using the risk index, but lowest risk under

the mathematical statistics approach. Such inconsistency should be recognised if risk is to

be managed effectively, whilst the practice of multi-hazard risk assessment needs to

incorporate the relative advantages of both approaches.
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1 Introduction

The impacts of one hazardous event are often exacerbated by interaction with another

(Marzocchi et al. 2009). The mechanism by which these interactions occur varies and may

be a product of one event triggering another, or ‘crowding’, where events occur inde-

pendently without evident common cause, but in close proximity, spatially, temporally or

both (Tarvainen et al. 2006; Carpignano et al. 2009; Marzocchi et al. 2012). The 2011

Tohoku earthquake which led to a tsunami and subsequently the Fukushima Daiichi

nuclear disaster (Norio et al. 2011) is an event cascade and an example of triggering, whilst

flooding in China’s Yangtze River Delta arising from a typhoon occurring at the same time

as annual monsoonal rainfall is an example of event crowding (Liu et al. 2013). Close

proximity between events may lower resilience to disaster and make recovery more dif-

ficult and illustrates how risk from multiple natural hazards is often greater than that

suggested by risk assessment that considers hazards as independent events.

Multi-hazard risk assessment (MHRA) has been developed to combat the limitations of

single-hazard appraisal (Armonia Project 2006; Marzocchi et al. 2009; Di Mauro et al.

2006), with MHRA approaches building on the methods developed for single-hazard risk

assessment, but additionally considering hazard interaction. The aim is to develop a more

complete understanding of risk by assessing, and usually mapping, either the relative danger

or expected losses (social, economic, environmental) due to the occurrence of multiple

natural hazards in an area(Armonia Project 2006; Dilley et al. 2005). Two MHRA

approaches exist, one developing a risk index, and the other using a mathematical statistics

approach. There are no MHRA studies that compare analysis of risk using these two

approaches for the same area. Therefore, this paper compares the risk index and mathe-

matical statistics methods (definition and methodology) and then applies them to China’s

provinces to analyse differences, including data needs and results. After discussing possible

reasons for differences in results, the relative merits of these two methods are summarised.

2 Methodology

2.1 The risk index approach

The risk index approach addresses the factors that lead to a disaster (disaster formation).

Risk is defined as the probability of loss caused by the interactions between the vulnera-

bility, exposure and the hazard. Risk is most commonly expressed as in Eq. (1) (ISDR

2004):

Risk ¼ Hazard� Vulnerability� Exposure ð1Þ

Where hazard is the presence of potentially damaging physical events in an area, exposure

is the number, types and monetary value of elements that are exposed to that hazard, and

vulnerability refers to intrinsic characteristics of those elements that make them more or

less susceptible to adverse impact. Selection of component indicators for hazard, vulner-

ability and exposure, and calculation of associated weights are key steps. The process is an

extension of that used for an individual hazard, with risks from individual hazards

aggregated in a unified MHRA index. Aggregation may proceed in two ways. The first is to

address hazard, vulnerability and exposure for individual hazards and then sum for the

multi-hazard risk index (Granger and Trevor 2000; Munich Reinsurance Company 2003;
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Khatsu and van Westen 2005; Schmidt-Thomé 2006; Thierry et al. 2008; Kunz and Hurni

2008; SCEMDOAG 2009):

R ¼ f
Xn

i¼1

Hi;
Xn

i¼1

Vi;
Xn

i¼1

Ei

 !
ð2Þ

An alternative aggregation approach is used in which each hazard risk index is first

assessed individually for a given area. Weights (see below) are then assigned to each

individual hazard risk and summation used to derive the multi-hazard risk index (Bell and

Glade 2004; UNDP 2004; Lavalle et al. 2005; Dilley et al. 2005; Wipulanusat et al. 2009;

Shi 2011):

R ¼
Xn

i¼1

f ðHi;Vi;EiÞ ð3Þ

In both cases, R is multi-hazard risk, Hi is hazard, Vi is vulnerability, Ei is exposure, and

i represents each individual hazard.

However, most methods in both aggregation approaches [Eqs. (2) and (3)] suffer the

drawback that the multi-hazard risk index is calculated by aggregating all single-hazard

risks with equal weight (Table 1), which does not adequately reflect the varied impacts of

different hazards present in the same area. Whilst both aggregation methods have advanced

MHRA and can be used to better compare the relative degree of danger between different

areas, these applications utilise hazard, vulnerability and exposure to assess the final multi-

hazard risk without a consideration of probabilities and exceedance probabilities (the

probability that a specified level of loss, or a greater loss, will occur), and thus, these

approaches cannot reflect the real risk in the study areas. Thus, the risk index is useful in a

relative sense, but is less helpful in an absolute sense for determining total losses.

2.2 The mathematical statistics approach

The mathematical statistics approach is based upon the analysis of observed natural dis-

asters. Risk is defined as a product of the probability of occurrence of a hazardous event

and the consequences of such an event for exposures (the magnitude of impact resulting

from realisation of the hazard). Risk is expressed as (IUGS 1997):

Risk ¼ Probability� Consequence ð4Þ

This is the basic model for the mathematical statistics method, and its associated loss

curve is shown in Fig. 1. Loss (L) is the loss (damage) associated with the disaster, and

EP(L) is the exceedance probability for the corresponding loss. Through application of this

approach, an exceedance probability-loss curve can be built, which shows the likelihood of

losses of different magnitudes, and which is used to estimate and evaluate risk of future

disasters. Both parametric and nonparametric methods are used to estimate the required

probabilities (FEMA 2004; Grünthal et al. 2006; Van Westen 2008; Schmidt et al. 2011;

Linares-Rivas 2012; Frolova et al. 2012; Liu et al. 2013) (Table 1).

The mathematical theory in the parametric method assumes that disaster losses follow a

known distribution function (curve). Historical loss data sets are often used to estimate the

distribution function parameters that are then used to calculate the probability distribution.

This methodology has been widely used in risk assessment. For instance, Grünthal et al.
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Table 1 Multi-hazard risk assessment approaches and applications

Country (or Institution) Study area Hazards Remarks

A. The risk index approach

Australia (AGSO—
Australian Geological
Survey Organisation)
Granger and Trevor
(2000)

Mackay
(Australia)

Cyclone (flood, strong wind,
storm tide)

Equation (2). Multi- hazard
risk was calculated by
combining the highest rank
for the individual hazards
and overall community
vulnerability

Munich Reinsurance
Company (2003)

Global Earthquake, windstorm, flood,
volcanic eruption, bush fire,
frost

Equation (2). Historical loss
data were used to decide the
weight for each single
hazard

German Bell and Glade
(2004)

Bı́ldudalur
(NW-
Iceland)

Snow avalanche, debris flow,
rock fall

Equation (3). Multi-hazard
risk map was created by
overlaying single-hazard
risk maps with equal weight

United Nations
Development
Programme (UNDP
2004)

Global Earthquake, tropical cyclone,
flood, drought

Equation (3). Multi-hazard
risk index was calculated by
aggregating single-hazard
risk index

Europe (Joint Research
Centre) Lavalle et al.
(2005)

Europe Flood, forest fire, drought,
heat wave

Equation (3). Multi-hazard
risk index was calculated by
aggregating single-hazard
risk index

World Bank Dilley et al.
(2005)

Global Earthquake, cyclone, flood,
landslide, drought, volcanic
hazards

Equation (3). Multi-hazard
risk index was calculated by
aggregating single-hazard
risk index

India Khatsu and van
Westen ( 2005)

Kohima
Town
(India)

Earthquake, landslide, fire Equation (2). Multi-hazard
map was created by
overlaying single-hazard
map

Europe (European
Spatial Planning and
Observation Network)
Schmidt-Thomé
(2006)

The enlarged
European
Union
(EU-29)

Avalanche, drought,
earthquake, extreme
temperature, flood, forest
fire, landslide, storm surge,
tsunami, volcanic eruption,
winter and tropical storm,
technological hazards

Equation (2). The Delphi
method was used to assign
weight to each single hazard

Cameroon Thierry et al.
(2008)

Mount
Cameroon

Volcanic hazards, landslide,
earthquake

Equation (2). Geographic
information system (GIS)
was used to combine each
single hazard and element at
risk

Switzerland Kunz and
Hurni (2008)

Switzerland Flood, mass movements,
snow avalanche

Equation (2). Multi-hazard
map was created by
overlaying single-hazard
map
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(2006) calculated exceedance probability–mean wind speed curves for windstorm risk

assessment using Schmidt and Gumbel distributions (Gumbel 1958). Stedinger et al.

(1992) estimated distribution function parameters by the method of moments for Gumbel

type, Pearson type III, Weibull and lognormal curves; instead, Grünthal et al. (2006) used

these distributions to build exceedance probability–discharge curves for flood risk

assessment.

Table 1 continued

Country (or Institution) Study area Hazards Remarks

The USA (SCEMDOAG
2009)

The USA Coastal events, dam failure,
drought, flood, fog,
geophysical events, human-
induced hazard events,
severe thunderstorm events,
temperature extreme,
wildfire, winter weather

Equation (2). The multi-
hazard index was
constructed by summing the
frequency of occurrence for
each hazard with equal
weight

Thailand Wipulanusat
et al. (2009)

Pak Phanang
basin
(Thailand)

Drought, flood Equation (3). Multi-hazard
risk map was created by
overlaying single-hazard
risk map

China Shi (2011) China Earthquake, typhoon, flood,
drought, landslide and
debris flow, sandstorm,
snow, hail, storm surge,
frost, forest fire, grassland
fire

Equation (3). The frequency
of occurrence for each
hazard was used to decide
the weight

B. The mathematical statistics approach

The US FEMA (2004) The USA Flood, hurricane, earthquake Parametric method and
historical information were
used to produce loss
estimates

German Grünthal et al.
(2006)

Cologne
(German)

Storm, flood, earthquake Parametric method

The Netherlands Van
Westen (2008)

Tegucigalpa
(Honduras)

Landslide, flood, earthquake,
technological hazards

Historical information and
parametric method were
used to estimate annual loss

New Zealand Schmidt
et al. (2011)

Hawke’s
Bay (New
Zealand)

Earthquake, storm, flood Synthetic loss curves were
developed by a combination
of nonparametric and
parametric method

Central American
Probabilistic Risk
Assessment Program
Linares-Rivas (2012)

Latin
America
and the
Caribbean
Region

Earthquake, hurricane,
volcanic hazards, flood,
tsunami, landslide

Historical information and
parametric method were
used to estimate annual loss
for several return periods

Russia Frolova et al.
(2012)

Russian
Federation

Earthquake, landslide, mud
flow, flood, storm,
avalanche

Parametric method was used
to estimate loss

China Liu et al. (2013) Yangtze
River
Delta
(China)

Flood, typhoon Nonparametric method was
used to calculate possible
loss in different multi-
hazard return periods
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There is sometimes a lack of historical observations, so it can be difficult to develop a

probability distribution function that reflects the real situation for parameter estimation. In

these circumstances, a nonparametric method is used, which may employ histogram

density estimation, kernel density estimation or information diffusion to derive probability

estimates. Histogram density estimation is easy to use, but the results obtained are crude

and are greatly influenced by the interval choice. Kernel density estimation (Rosenblatt

1956; Parzen 1962) are closely related to histograms, but can be endowed with properties

such as smoothness or continuity by using a suitable kernel. However, the key problem of

how to choose an appropriate smoothing parameter still remains. The information diffusion

method was introduced by Huang (1997) to overcome this problem and improves the

accuracy of natural disaster risk assessment. The information diffusion method can use

sample data to assess natural disaster risk, and Huang (2000) showed it to be about 28 %

more efficient than histogram density estimation.

These two risk assessment approaches are distinct, in that the risk index method pri-

marily serves to aid understanding of the disaster formation mechanism, as it strives for an

appreciation of the relative importance of hazard, vulnerability and exposure (of human

and physical systems) and the interaction between these elements, in the overall deter-

mination of risk (Shi 1996; Wisner et al. 2004). Conversely, the statistics method expresses

risk as probabilistic loss and is useful in estimating and evaluating losses from potential

future disaster. It gives more consideration to the probability of occurrence, but relative to

the risk index approach, exposure and vulnerability are neglected.

3 Application to China

3.1 Data

These approaches have not previously been compared, whilst researchers rarely explicitly

justify their chosen approach. Their comparison is important to develop more transparent

MHRA that would better inform management of risk from multiple hazards. We therefore

compared the two MHRA approaches via their application to a common area that expe-

riences significant natural hazards. A history of natural disasters driven by different natural

hazards, plus a growing population and economy at risk, makes China a suitable region to

conduct this comparison (Wang et al. 2008). For both approaches, nine natural hazards

including flood, drought, heat wave, cold wave, earthquake, landslide, storm (typhoon and

local storm), wildfire and avalanche were addressed to calculate the risk to human life and

economic production.

Fig. 1 Exceedance probability-
loss curve
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Historical data on natural disasters in China were drawn from the EM-DAT Interna-

tional Disaster Database for 1981–2012 and used in application of both approaches. The

approaches differ in their requirements for socio-economic data, in terms of both data type

and time series, which reflects differences in the complexity of the approaches. The risk

index requires socio-economic data for multiple variables, but only 1 year of data is

required (Table 2). The mathematical statistics approach is less demanding in terms of the

variety of socio-economic data required, but a longer time series is needed (Table 2).

3.2 Application and results

The risk index approach was applied such that the multi-hazard index was the sum of each

hazard value multiplied by its weight, calculated according to the average historical death

toll associated with this hazard (Munich Reinsurance Company 2003). The normalised

multi-hazard index to human life is shown in Fig. 2a. Provinces with a high multi-hazard

index value were mainly located in south-eastern China. Population age structure, gender

ratio and quality of supporting infrastructure (transport routes, telecommunication facilities

and medical facilities) were used as indicators to calculate the vulnerability index (Cutter

et al. 2003; Villagran de Leon 2006; SCEMDOAG 2009) to human life using the entropy

weight method1 (Zou et al. 2006; Miao and Ding 2015). As shown in Fig. 2b, Provinces

with a high vulnerability index value were mainly located in western China. The exposure

index to human life loss was represented by population density. As shown in Fig. 2c,

Shanghai has the highest exposure index. The multi-hazard risk index to human life was

then calculated by aggregating the multi-hazard index, the vulnerability index and the

exposure index with equal weight (Fig. 2d). This methodology was used in assessing

Table 2 Data for multi-hazard risk assessment in China

Approach Data Index Time
interval

Source

Risk index
approach

Socio-
economic
data

GDP, population size, gender
ratio, age structure, traffic
condition, telecommunication
facilities, medical condition

2013 China statistical yearbook

Historical
disaster
data

Number of disaster 1981–2012 EM-DAT, the OFDA/
CRED international
disaster database (http://
www.em-dat.be)

Deaths and economic loss
caused by disaster

1981–2012

Mathematical
statistics
approach

Socio-
economic
data

GDP, population size 1981–2012 China statistical yearbook

Historical
disaster
data

Deaths and economic loss
caused by disaster

1981–2012 EM-DAT, the OFDA/
CRED international
disaster database (http://
www.em-dat.be)

1 Entropy measures the amount of useful information in the indicator provided. When the difference in one
indicator between different assessment units is small, the entropy is great; it illustrates that this indicator
provides less useful information, and the weight of this indicator should be set correspondingly small. On the
other hand, if the difference is large and the entropy is small, the weight would be big.
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economic loss, with GDP per km2 as the exposure index. The hazard index, vulnerability

index, exposure index and multi-hazard risk index to economic loss are shown in Fig. 3.

The information diffusion method (Huang 1997) was adopted in the mathematical

statistics approach. The exceedance probability (EP) distribution of multi-hazard loss was

calculated based on observed disaster loss data (1981–2012), and an EP loss curve

developed. Multi-hazard risk to life and GDP was mapped for 10-, 20- and 50-year hazard

return periods (Figs. 4, 5). Estimated losses are expressed as deaths per million people and

ratio of economic loss to production, so population size and GDP in 2013 were used to

probabilistically estimate deaths and economic loss in 2013 attributed to multi-hazard with

a 20-year return period (Fig. 6).

4 Comparative performance

Comparing these with the risk maps generated using the risk index approach and mathe-

matical statistics approach shows that the results are inconsistent (Figs. 2d, 3d, 6a, b). For

instance, Gansu and Sichuan provinces are at low risk of life loss with the risk index

approach (Fig. 2d), but high risk using the mathematical statistics approach (Fig. 6a).

Similarly, Tibet is identified as being at almost the highest risk of economic loss using the

risk index (Fig. 3d), but lowest risk under the mathematical statistics approach (Fig. 6b).

Fig. 2 Multi-hazard risk assessment to human life in China (2013) using the risk index approach (0
represents the lowest value, and 1 represents the highest value). a Multi-hazard index to human life. b
Vulnerability index to human life. c Exposure index to human life. d Multi-hazard risk index to human life
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The risk index expresses risk using a synthetic unitless indicator, whilst the mathe-

matical statistics approach expresses risk as integrated losses (lives, GDP); hence, results

cannot be compared directly. However, Spearman rank correlation (Spearman 1904)

coefficients of 0.17 and 0.33 for multi-hazard risk to human life and loss of economic

production clearly reveal the lack of consistency between the two approaches, which

supposedly both assess the same multi-hazard risk. This is further illustrated by Table 3,

the risk ranking for the two approaches.

There are several possible explanations for this observation. Firstly, the risk index and

mathematical statistics approaches adopt different assessing elements. The risk index

approach assesses risk from component indicators for hazard, vulnerability and exposure,

but mathematical statistics approach adopt probability and corresponding loss to measure

the risk. Second, MHRA using the risk index approach draws on vulnerability and expo-

sure data for a single year only (2013 in our analysis), whereas the mathematical statistics

method makes a probabilistic assessment that must draw on a long run time series of

observed losses (32 years in our case). Thirdly, and related to this, is that the mathematical

statistics approach does not explicitly address changes in vulnerability (of population and

property), but these values change from year to year as a country develops. A region

experiencing rapid population growth may see a major change in the population that is

vulnerable to natural hazards, but the risk index reflects this vulnerability for 1 year only

(most likely that for which the latest data are available), and hence is unlikely to be

Fig. 3 Multi-hazard risk assessment to loss of economic production (GDP) in China (2013) using the risk
index approach (0 represents the lowest value, and 1 represents the highest value). a Multi-hazard index to
economic production. b Vulnerability index to economic production. c Exposure index to economic
production. d Multi-hazard risk index to economic production
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representative of vulnerability over the long run. The mathematical statistics approach does

not address vulnerability directly, but does so indirectly, via observed losses, which in

contrast are for the long run. Fourthly, the risk index is also similarly sensitive to changes

in population (or property) exposure (e.g. the population density of Shanghai, at 3809

people per km2 is 1494 times higher than that of Tibet). Finally, the mathematical statistics

approach underestimates the influence of extreme events whose return periods are sub-

stantially longer than the time period of the observed loss data. This is evident in the case

of Sichuan which is calculated as high risk (to human life) in the 20-year return period,

because this region experienced an earthquake in 2008 whose magnitude (and death toll, a

reported 87,587 deaths) (USGS 2012) had a return period that was much longer than that of

the observed loss record. If more extreme natural hazard events are included, the observed

loss data would increase exceedance probabilities and the resulting multi-hazard risk

estimation.

Despite the difference in results, it cannot be concluded that one approach is wrong or

that neither is correct. These two approaches both provide a measure of risk, but they each

have a different emphasis. Both approaches have certain advantages and drawbacks which

reflect that one emphasises the disaster formation mechanism (and is best used to assess

relative risk), and the other emphasises the expected losses (thus reflecting real-world

observations, but neglecting exposure and vulnerability) (Table 4). Our analysis for China

has demonstrated that these two approaches can differ in the estimation of risk, so much so

that a complete reversal of the risk picture gained is possible if switching from one

approach to the other. This has significant implications for management of that risk.

Fig. 4 Multi-hazard risk to human life for selected event return periods. a 10-year return periods. b
20-year return periods. c 50-year return periods
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5 Conclusion and discussion

We conclude that in assessing risk from multiple natural hazards, there is a need to

recognise that the results of a MHRA are heavily dependent upon the approach adopted,

and that there is clearly danger to effective risk management, in unwittingly choosing one

Fig. 5 Multi-hazard risk to economic production for selected event return periods. a 10-year return
periods. b 20-year return periods. c 50-year return periods

Fig. 6 Death and economic loss in 2013 to multi-hazard with a 20-year return period. a Deaths in 2013 to
multi-hazard with a 20-year return period. b Economic loss in 2013 to multi-hazard with a 20-year return
period

Nat Hazards (2016) 82:139–153 149

123



approach over another, with for example, choice of approach driven by practical consid-

erations, such as data availability.

Comparative analysis of multi-hazard risk merits further work, for different territories

and geographic scales, to verify our findings. However, the degree of inconsistency

between the approaches revealed by our analysis implies that risk assessors must recognise

the relative merits of their adopted approach, and clearly explain to those with natural

hazard risk management responsibilities (including politicians, policy makers and

Table 3 Province ranking by the risk index and mathematical statistics approaches to human life and
economic production

Province Risk ranking to human life Risk ranking to economic production

Risk index Mathematical statistics Risk index Mathematical statistics

Beijing 25 26 16 29

Tianjin 18 30 24 26

Hebei 27 10 26 6

Shanxi 30 20 28 21

Inner Mongolia 14 24 14 10

Liaoning 22 17 13 3

Jilin 23 23 20 14

Heilongjiang 16 18 9 16

Shanghai 1 27 1 13

Jiangsu 13 8 12 2

Zhejiang 6 13 6 9

Anhui 11 14 17 8

Fujian 5 11 5 17

Jiangxi 26 6 11 11

Shandong 17 21 18 20

Henan 24 22 22 18

Hubei 8 12 7 7

Hunan 10 4 4 5

Guangdong 2 5 3 1

Guangxi 15 16 21 12

Hainan 19 29 23 25

Chongqing 29 25 30 22

Sichuan 21 1 19 4

Guizhou 12 28 27 19

Yunnan 9 9 10 23

Tibet 3 15 2 31

Shaanxi 20 7 25 15

Gansu 31 2 29 27

Qinghai 7 3 15 28

Ningxia 28 31 31 30

Xinjiang 4 19 8 24

150 Nat Hazards (2016) 82:139–153

123



planners) which approach has been used and why. As shown in Fig. 7, the approach

adopted will likely depend upon the objective of the MHRA. Loss assessors (e.g. the

insurance industry) may favour the mathematical statistics approach, but those seeking to

proactively manage multi-hazard risk require a deeper understanding of the factors that

underpin that risk and so will favour the risk index approach. The evident disparity

between these two approaches means that effective management of multi-hazard risk,

which better protects life and property, may be constrained.

A hybrid MHRA approach that integrates the best of the index and statistical approaches

is clearly worth pursuing. This could be achieved by analysing risk considering the disaster

formation mechanism considering hazard, vulnerability and exposure, and calculating

possible loss and corresponding probability of loss under different natural hazard scenarios.

Table 4 Relative merits of multi-hazard risk assessment approaches

Risk index Mathematical statistics

Advantages Considers the disaster formation mechanism Calculates the possible loss

Helps to understand the contribution of hazard,
vulnerability and exposure to overall risk

Calculates exceedance
probability for risk

Better compares the relative danger between different
areas

Simple to operate

Disadvantages Cannot calculate probability of the risk Neglects vulnerability and
exposure

Weight problem is not resolved Potentially biased by extreme
events

Neglects interaction between different hazards Data update is complex

Neglects interaction between
different hazards

Fig. 7 Multi-hazard risk assessment (economic loss) for relevant stakeholders (a) policy makers and
planners, and (b) insurance industries
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A key element here would be consideration of the interaction between hazards, the

interaction of hazards and vulnerability, and the frequency of hazard occurrence.
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